Jacobian Computation for Cumulative B-Splines on SE(3) and Application to Continuous-Time Object Tracking

25 Jan 2022  ·  Javier Tirado, Javier Civera ·

In this paper we propose a method that estimates the $SE(3)$ continuous trajectories (orientation and translation) of the dynamic rigid objects present in a scene, from multiple RGB-D views. Specifically, we fit the object trajectories to cumulative B-Splines curves, which allow us to interpolate, at any intermediate time stamp, not only their poses but also their linear and angular velocities and accelerations. Additionally, we derive in this work the analytical $SE(3)$ Jacobians needed by the optimization, being applicable to any other approach that uses this type of curves. To the best of our knowledge this is the first work that proposes 6-DoF continuous-time object tracking, which we endorse with significant computational cost reduction thanks to our analytical derivations. We evaluate our proposal in synthetic data and in a public benchmark, showing competitive results in localization and significant improvements in velocity estimation in comparison to discrete-time approaches.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here