Paper

JEDI-net: a jet identification algorithm based on interaction networks

We investigate the performance of a jet identification algorithm based on interaction networks (JEDI-net) to identify all-hadronic decays of high-momentum heavy particles produced at the LHC and distinguish them from ordinary jets originating from the hadronization of quarks and gluons. The jet dynamics are described as a set of one-to-one interactions between the jet constituents. Based on a representation learned from these interactions, the jet is associated to one of the considered categories. Unlike other architectures, the JEDI-net models achieve their performance without special handling of the sparse input jet representation, extensive pre-processing, particle ordering, or specific assumptions regarding the underlying detector geometry. The presented models give better results with less model parameters, offering interesting prospects for LHC applications.

Results in Papers With Code
(↓ scroll down to see all results)