Jittering Effects Analysis and Beam Training Design for UAV Millimeter Wave Communications

13 Apr 2021  ·  Wei Wang, Wei zhang ·

Jittering effects significantly degrade the performance of UAV millimeter-wave (mmWave) communications. To investigate the impacts of UAV jitter on mmWave communications, we firstly model UAV mmWave channel based on the geometric relationship between element antennas of the uniform planar arrays (UPAs). Then, we extract the relationship between (I) UAV attitude angles & position coordinates and (II) angle of arrival (AoA) & angle of departure (AoD) of mmWave channel, and we also derive the distribution of AoA/AoD at UAV side from the random fluctuations of UAV attitude angles, i.e., UAV jitter. In beam training design, with the relationship between attitude angles and AoA/AoD, we propose to generate a rough estimate of AoA and AoD from UAV navigation information. Finally, with the rough AoA/AoD estimate, we develop a compressed sensing (CS) based beam training scheme with constrained sensing range as the fine AoA/AoD estimation. Particularly, we construct a partially random sensing matrix to narrow down the sensing range of CS-based beam training. Numerical results show that our proposed UAV beam training scheme assisted by navigation information can achieve better accuracy with reduced training length in AoA/AoD estimation and is thus more suitable for UAV mmWave communications under jittering effects.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here