Joint Association Graph Screening and Decomposition for Large-scale Linear Dynamical Systems

17 Nov 2014  ·  Yiyuan She, Yuejia He, Shijie Li, Dapeng Wu ·

This paper studies large-scale dynamical networks where the current state of the system is a linear transformation of the previous state, contaminated by a multivariate Gaussian noise. Examples include stock markets, human brains and gene regulatory networks. We introduce a transition matrix to describe the evolution, which can be translated to a directed Granger transition graph, and use the concentration matrix of the Gaussian noise to capture the second-order relations between nodes, which can be translated to an undirected conditional dependence graph. We propose regularizing the two graphs jointly in topology identification and dynamics estimation. Based on the notion of joint association graph (JAG), we develop a joint graphical screening and estimation (JGSE) framework for efficient network learning in big data. In particular, our method can pre-determine and remove unnecessary edges based on the joint graphical structure, referred to as JAG screening, and can decompose a large network into smaller subnetworks in a robust manner, referred to as JAG decomposition. JAG screening and decomposition can reduce the problem size and search space for fine estimation at a later stage. Experiments on both synthetic data and real-world applications show the effectiveness of the proposed framework in large-scale network topology identification and dynamics estimation.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here