Joint Device Scheduling and Resource Allocation for Latency Constrained Wireless Federated Learning

14 Jul 2020  ·  Wenqi Shi, Sheng Zhou, Zhisheng Niu, Miao Jiang, Lu Geng ·

In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which in each step selects the device consuming the least updating time obtained by the optimal bandwidth allocation, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here