Joint Estimation of Multiple Dependent Gaussian Graphical Models with Applications to Mouse Genomics

30 Aug 2016  ·  Yuying Xie, Yufeng Liu, William Valdar ·

Gaussian graphical models are widely used to represent conditional dependence among random variables. In this paper, we propose a novel estimator for data arising from a group of Gaussian graphical models that are themselves dependent. A motivating example is that of modeling gene expression collected on multiple tissues from the same individual: here the multivariate outcome is affected by dependencies acting not only at the level of the specific tissues, but also at the level of the whole body; existing methods that assume independence among graphs are not applicable in this case. To estimate multiple dependent graphs, we decompose the problem into two graphical layers: the systemic layer, which affects all outcomes and thereby induces cross- graph dependence, and the category-specific layer, which represents graph-specific variation. We propose a graphical EM technique that estimates both layers jointly, establish estimation consistency and selection sparsistency of the proposed estimator, and confirm by simulation that the EM method is superior to a simple one-step method. We apply our technique to mouse genomics data and obtain biologically plausible results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here