Joint Topic-Semantic-aware Social Recommendation for Online Voting

3 Dec 2017  ·  Hongwei Wang, Jia Wang, Miao Zhao, Jiannong Cao, Minyi Guo ·

Online voting is an emerging feature in social networks, in which users can express their attitudes toward various issues and show their unique interest. Online voting imposes new challenges on recommendation, because the propagation of votings heavily depends on the structure of social networks as well as the content of votings. In this paper, we investigate how to utilize these two factors in a comprehensive manner when doing voting recommendation. First, due to the fact that existing text mining methods such as topic model and semantic model cannot well process the content of votings that is typically short and ambiguous, we propose a novel Topic-Enhanced Word Embedding (TEWE) method to learn word and document representation by jointly considering their topics and semantics. Then we propose our Joint Topic-Semantic-aware social Matrix Factorization (JTS-MF) model for voting recommendation. JTS-MF model calculates similarity among users and votings by combining their TEWE representation and structural information of social networks, and preserves this topic-semantic-social similarity during matrix factorization. To evaluate the performance of TEWE representation and JTS-MF model, we conduct extensive experiments on real online voting dataset. The results prove the efficacy of our approach against several state-of-the-art baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here