Jointly Deep Multi-View Learning for Clustering Analysis

19 Aug 2018  ·  Bingqian Lin, Yuan Xie, Yanyun Qu, Cuihua Li, Xiaodan Liang ·

In this paper, we propose a novel Joint framework for Deep Multi-view Clustering (DMJC), where multiple deep embedded features, multi-view fusion mechanism and clustering assignments can be learned simultaneously. Our key idea is that the joint learning strategy can sufficiently exploit clustering-friendly multi-view features and useful multi-view complementary information to improve the clustering performance. How to realize the multi-view fusion in such a joint framework is the primary challenge. To do so, we design two ingenious variants of deep multi-view joint clustering models under the proposed framework, where multi-view fusion is implemented by two different schemes. The first model, called DMJC-S, performs multi-view fusion in an implicit way via a novel multi-view soft assignment distribution. The second model, termed DMJC-T, defines a novel multi-view auxiliary target distribution to conduct the multi-view fusion explicitly. Both DMJC-S and DMJC-T are optimized under a KL divergence like clustering objective. Experiments on six challenging image datasets demonstrate the superiority of both DMJC-S and DMJC-T over single/multi-view baselines and the state-of-the-art multiview clustering methods, which proves the effectiveness of the proposed DMJC framework. To our best knowledge, this is the first work to model the multi-view clustering in a deep joint framework, which will provide a meaningful thinking in unsupervised multi-view learning.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here