Jointly Learning Truth-Conditional Denotations and Groundings using Parallel Attention

14 Apr 2021  ·  Leon Bergen, Dzmitry Bahdanau, Timothy J. O'Donnell ·

We present a model that jointly learns the denotations of words together with their groundings using a truth-conditional semantics. Our model builds on the neurosymbolic approach of Mao et al. (2019), learning to ground objects in the CLEVR dataset (Johnson et al., 2017) using a novel parallel attention mechanism. The model achieves state of the art performance on visual question answering, learning to detect and ground objects with question performance as the only training signal. We also show that the model is able to learn flexible non-canonical groundings just by adjusting answers to questions in the training set.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here