K For The Price Of 1: Parameter Efficient Multi-task And Transfer Learning

We introduce a novel method that enables parameter-efficient transfer and multitask learning. The basic approach is to allow a model patch - a small set of parameters - to specialize to each task, instead of fine-tuning the last layer or the entire network... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
Convolution
Convolutions
Non Maximum Suppression
Proposal Filtering
1x1 Convolution
Convolutions
SSD
Object Detection Models