K-NN active learning under local smoothness assumption

17 Jan 2020  ·  Boris Ndjia Njike, Xavier Siebert ·

There is a large body of work on convergence rates either in passive or active learning. Here we first outline some of the main results that have been obtained, more specifically in a nonparametric setting under assumptions about the smoothness of the regression function (or the boundary between classes) and the margin noise... We discuss the relative merits of these underlying assumptions by putting active learning in perspective with recent work on passive learning. We design an active learning algorithm with a rate of convergence better than in passive learning, using a particular smoothness assumption customized for k-nearest neighbors. Unlike previous active learning algorithms, we use a smoothness assumption that provides a dependence on the marginal distribution of the instance space. Additionally, our algorithm avoids the strong density assumption that supposes the existence of the density function of the marginal distribution of the instance space and is therefore more generally applicable. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here