Kaldi+PDNN: Building DNN-based ASR Systems with Kaldi and PDNN

27 Jan 2014  ·  Yajie Miao ·

The Kaldi toolkit is becoming popular for constructing automated speech recognition (ASR) systems. Meanwhile, in recent years, deep neural networks (DNNs) have shown state-of-the-art performance on various ASR tasks. This document describes our open-source recipes to implement fully-fledged DNN acoustic modeling using Kaldi and PDNN. PDNN is a lightweight deep learning toolkit developed under the Theano environment. Using these recipes, we can build up multiple systems including DNN hybrid systems, convolutional neural network (CNN) systems and bottleneck feature systems. These recipes are directly based on the Kaldi Switchboard 110-hour setup. However, adapting them to new datasets is easy to achieve.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here