NeuralKalman: A Learnable Kalman Filter for Acoustic Echo Cancellation

29 Jan 2023  ·  Yixuan Zhang, Meng Yu, Hao Zhang, Dong Yu, DeLiang Wang ·

The robustness of the Kalman filter to double talk and its rapid convergence make it a popular approach for addressing acoustic echo cancellation (AEC) challenges. However, the inability to model nonlinearity and the need to tune control parameters cast limitations on such adaptive filtering algorithms. In this paper, we integrate the frequency domain Kalman filter (FDKF) and deep neural networks (DNNs) into a hybrid method, called NeuralKalman, to leverage the advantages of deep learning and adaptive filtering algorithms. Specifically, we employ a DNN to estimate nonlinearly distorted far-end signals, a transition factor, and the nonlinear transition function in the state equation of the FDKF algorithm. Experimental results show that the proposed NeuralKalman improves the performance of FDKF significantly and outperforms strong baseline methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here