Karhunen-Loève Data Imputation in High Contrast Imaging

31 Aug 2023  ·  Bin B. Ren ·

Detection and characterization of extended structures is a crucial goal in high contrast imaging. However, these structures face challenges in data reduction, leading to over-subtraction from speckles and self-subtraction with most existing methods. Iterative post-processing methods offer promising results, but their integration into existing pipelines is hindered by selective algorithms, high computational cost, and algorithmic regularization. To address this for reference differential imaging (RDI), here we propose the data imputation concept to Karhunen-Lo\`eve transform (DIKL) by modifying two steps in the standard Karhunen-Lo\`eve image projection (KLIP) method. Specifically, we partition an image to two matrices: an anchor matrix which focuses only on the speckles to obtain the DIKL coefficients, and a boat matrix which focuses on the regions of astrophysical interest for speckle removal using DIKL components. As an analytical approach, DIKL achieves high-quality results with significantly reduced computational cost (~3 orders of magnitude less than iterative methods). Being a derivative method of KLIP, DIKL is seamlessly integrable into high contrast imaging pipelines for RDI observations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here