Low-Complexity Nonparametric Bayesian Online Prediction with Universal Guarantees

23 Jan 2019  ·  Alix Lhéritier, Frédéric Cazals ·

We propose a novel nonparametric online predictor for discrete labels conditioned on multivariate continuous features. The predictor is based on a feature space discretization induced by a full-fledged k-d tree with randomly picked directions and a recursive Bayesian distribution, which allows to automatically learn the most relevant feature scales characterizing the conditional distribution. We prove its pointwise universality, i.e., it achieves a normalized log loss performance asymptotically as good as the true conditional entropy of the labels given the features. The time complexity to process the $n$-th sample point is $O(\log n)$ in probability with respect to the distribution generating the data points, whereas other exact nonparametric methods require to process all past observations. Experiments on challenging datasets show the computational and statistical efficiency of our algorithm in comparison to standard and state-of-the-art methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here