KERMIT - A Transformer-Based Approach for Knowledge Graph Matching

29 Apr 2022  ·  Sven Hertling, Jan Portisch, Heiko Paulheim ·

One of the strongest signals for automated matching of knowledge graphs and ontologies are textual concept descriptions. With the rise of transformer-based language models, text comparison based on meaning (rather than lexical features) is available to researchers. However, performing pairwise comparisons of all textual descriptions of concepts in two knowledge graphs is expensive and scales quadratically (or even worse if concepts have more than one description). To overcome this problem, we follow a two-step approach: we first generate matching candidates using a pre-trained sentence transformer (so called bi-encoder). In a second step, we use fine-tuned transformer cross-encoders to generate the best candidates. We evaluate our approach on multiple datasets and show that it is feasible and produces competitive results.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here