Kernel Based Estimation of Spectral Risk Measures

8 Mar 2019  ·  Suparna Biswas, Rituparna Sen ·

Spectral risk measures (SRMs) belong to the family of coherent risk measures. A natural estimator for the class of SRMs has the form of L-statistics. Various authors have studied and derived the asymptotic properties of the empirical estimator of SRM. We propose a kernel based estimator of SRM. We investigate the large sample properties of general L-statistics based on i.i.d and dependent observations and apply them to our estimator. We prove that it is strongly consistent and asymptotically normal. We compare the finite sample performance of our proposed kernel estimator with that of several existing estimators for different SRMs using Monte Carlo simulation. We observe that our proposed kernel estimator outperforms all the estimators. Based on our simulation study we have estimated the exponential SRM of four future indices-that is Nikkei 225, Dax, FTSE 100, and Hang Seng. We also perform a backtesting exercise of SRM.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here