Kernel Conjugate Gradient Methods with Random Projections

5 Nov 2018Junhong LinVolkan Cevher

We propose and study kernel conjugate gradient methods (KCGM) with random projections for least-squares regression over a separable Hilbert space. Considering two types of random projections generated by randomized sketches and Nystr\"{o}m subsampling, we prove optimal statistical results with respect to variants of norms for the algorithms under a suitable stopping rule... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet