Kernel Mean Embeddings of Von Neumann-Algebra-Valued Measures

29 Jul 2020  ·  Yuka Hashimoto, Isao Ishikawa, Masahiro Ikeda, Fuyuta Komura, Yoshinobu Kawahara ·

Kernel mean embedding (KME) is a powerful tool to analyze probability measures for data, where the measures are conventionally embedded into a reproducing kernel Hilbert space (RKHS). In this paper, we generalize KME to that of von Neumann-algebra-valued measures into reproducing kernel Hilbert modules (RKHMs), which provides an inner product and distance between von Neumann-algebra-valued measures. Von Neumann-algebra-valued measures can, for example, encode relations between arbitrary pairs of variables in a multivariate distribution or positive operator-valued measures for quantum mechanics. Thus, this allows us to perform probabilistic analyses explicitly reflected with higher-order interactions among variables, and provides a way of applying machine learning frameworks to problems in quantum mechanics. We also show that the injectivity of the existing KME and the universality of RKHS are generalized to RKHM, which confirms many useful features of the existing KME remain in our generalized KME. And, we investigate the empirical performance of our methods using synthetic and real-world data.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here