Kernel Selection using Multiple Kernel Learning and Domain Adaptation in Reproducing Kernel Hilbert Space, for Face Recognition under Surveillance Scenario

Face Recognition (FR) has been the interest to several researchers over the past few decades due to its passive nature of biometric authentication. Despite high accuracy achieved by face recognition algorithms under controlled conditions, achieving the same performance for face images obtained in surveillance scenarios, is a major hurdle. Some attempts have been made to super-resolve the low-resolution face images and improve the contrast, without considerable degree of success. The proposed technique in this paper tries to cope with the very low resolution and low contrast face images obtained from surveillance cameras, for FR under surveillance conditions. For Support Vector Machine classification, the selection of appropriate kernel has been a widely discussed issue in the research community. In this paper, we propose a novel kernel selection technique termed as MFKL (Multi-Feature Kernel Learning) to obtain the best feature-kernel pairing. Our proposed technique employs a effective kernel selection by Multiple Kernel Learning (MKL) method, to choose the optimal kernel to be used along with unsupervised domain adaptation method in the Reproducing Kernel Hilbert Space (RKHS), for a solution to the problem. Rigorous experimentation has been performed on three real-world surveillance face datasets : FR\_SURV, SCface and ChokePoint. Results have been shown using Rank-1 Recognition Accuracy, ROC and CMC measures. Our proposed method outperforms all other recent state-of-the-art techniques by a considerable margin.

Results in Papers With Code
(↓ scroll down to see all results)