Kernelized Support Tensor Machines

In the context of supervised tensor learning, preserving the structural information and exploiting the discriminative nonlinear relationships of tensor data are crucial for improving the performance of learning tasks. Based on tensor factorization theory and kernel methods, we propose a novel Kernelized Support Tensor Machine (KSTM) which integrates kernelized tensor factorization with maximum-margin criterion... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet