Kernels over Sets of Finite Sets using RKHS Embeddings, with Application to Bayesian (Combinatorial) Optimization

9 Oct 2019Poompol BuathongDavid GinsbourgerTipaluck Krityakierne

We focus on kernel methods for set-valued inputs and their application to Bayesian set optimization, notably combinatorial optimization. We investigate two classes of set kernels that both rely on Reproducing Kernel Hilbert Space embeddings, namely the ``Double Sum'' (DS) kernels recently considered in Bayesian set optimization, and a class introduced here called ``Deep Embedding'' (DE) kernels that essentially consists in applying a radial kernel on Hilbert space on top of the canonical distance induced by another kernel such as a DS kernel... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet