Knife and Threat Detectors

4 Apr 2020David A. NoeverSam E. Miller Noever

Despite rapid advances in image-based machine learning, the threat identification of a knife wielding attacker has not garnered substantial academic attention. This relative research gap appears less understandable given the high knife assault rate (>100,000 annually) and the increasing availability of public video surveillance to analyze and forensically document... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.