KNOSOS: a fast orbit-averaging neoclassical code for arbitrary stellarator geometry

30 Aug 2019  ·  J. L. Velasco, I. Calvo, F. I. Parra, J. M. García-Regaña ·

KNOSOS (KiNetic Orbit-averaging SOlver for Stellarators) is a freely available, open-source code that calculates neoclassical transport in low-collisionality plasmas of three-dimensional magnetic confinement devices by solving the radially local drift-kinetic and quasineutrality equations. The main feature of KNOSOS is that it relies on orbit-averaging, which removes the dependence on the coordinate along the magnetic field line, and allows to solve the drift-kinetic equation very fast. KNOSOS treats rigorously the effect of the component of the magnetic drift that is tangent to magnetic surfaces, and of the component of the electrostatic potential that varies on the flux-surface, {\varphi}_1. Furthermore, the equation solved is linear in {\varphi}_1, which permits an efficient solution of the quasineutrality equation. As long as the radially local approach is valid, KNOSOS can be applied to the calculation of neoclassical transport in stellarators (helias, heliotrons, heliacs, etc.) and tokamaks with broken axisymmetry. In this paper, we show several calculations for the stellarators W7-X, LHD, NCSX and TJ-II that provide benchmark with standard local codes and demonstrate the advantages of this approach.

PDF Abstract