Knowledge Combination to Learn Rotated Detection Without Rotated Annotation

Rotated bounding boxes drastically reduce output ambiguity of elongated objects, making it superior to axis-aligned bounding boxes. Despite the effectiveness, rotated detectors are not widely employed. Annotating rotated bounding boxes is such a laborious process that they are not provided in many detection datasets where axis-aligned annotations are used instead. In this paper, we propose a framework that allows the model to predict precise rotated boxes only requiring cheaper axis-aligned annotation of the target dataset 1. To achieve this, we leverage the fact that neural networks are capable of learning richer representation of the target domain than what is utilized by the task. The under-utilized representation can be exploited to address a more detailed task. Our framework combines task knowledge of an out-of-domain source dataset with stronger annotation and domain knowledge of the target dataset with weaker annotation. A novel assignment process and projection loss are used to enable the co-training on the source and target datasets. As a result, the model is able to solve the more detailed task in the target domain, without additional computation overhead during inference. We extensively evaluate the method on various target datasets including fresh-produce dataset, HRSC2016 and SSDD. Results show that the proposed method consistently performs on par with the fully supervised approach.

PDF Abstract CVPR 2023 PDF CVPR 2023 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here