Knowledge Enhanced Pretrained Language Models: A Compreshensive Survey

16 Oct 2021  ·  Xiaokai Wei, Shen Wang, Dejiao Zhang, Parminder Bhatia, Andrew Arnold ·

Pretrained Language Models (PLM) have established a new paradigm through learning informative contextualized representations on large-scale text corpus. This new paradigm has revolutionized the entire field of natural language processing, and set the new state-of-the-art performance for a wide variety of NLP tasks. However, though PLMs could store certain knowledge/facts from training corpus, their knowledge awareness is still far from satisfactory. To address this issue, integrating knowledge into PLMs have recently become a very active research area and a variety of approaches have been developed. In this paper, we provide a comprehensive survey of the literature on this emerging and fast-growing field - Knowledge Enhanced Pretrained Language Models (KE-PLMs). We introduce three taxonomies to categorize existing work. Besides, we also survey the various NLU and NLG applications on which KE-PLM has demonstrated superior performance over vanilla PLMs. Finally, we discuss challenges that face KE-PLMs and also promising directions for future research.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here