Knowledge Infused Learning (K-IL): Towards Deep Incorporation of Knowledge in Deep Learning

1 Dec 2019  ·  Ugur Kursuncu, Manas Gaur, Amit Sheth ·

Learning the underlying patterns in data goes beyond instance-based generalization to external knowledge represented in structured graphs or networks. Deep learning that primarily constitutes neural computing stream in AI has shown significant advances in probabilistically learning latent patterns using a multi-layered network of computational nodes (i.e., neurons/hidden units). Structured knowledge that underlies symbolic computing approaches and often supports reasoning, has also seen significant growth in recent years, in the form of broad-based (e.g., DBPedia, Yago) and domain, industry or application specific knowledge graphs. A common substrate with careful integration of the two will raise opportunities to develop neuro-symbolic learning approaches for AI, where conceptual and probabilistic representations are combined. As the incorporation of external knowledge will aid in supervising the learning of features for the model, deep infusion of representational knowledge from knowledge graphs within hidden layers will further enhance the learning process. Although much work remains, we believe that knowledge graphs will play an increasing role in developing hybrid neuro-symbolic intelligent systems (bottom-up deep learning with top-down symbolic computing) as well as in building explainable AI systems for which knowledge graphs will provide scaffolding for punctuating neural computing. In this position paper, we describe our motivation for such a neuro-symbolic approach and framework that combines knowledge graph and neural networks.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here