Knowledge Refactoring for Inductive Program Synthesis

21 Apr 2020  ·  Sebastijan Dumancic, Tias Guns, Andrew Cropper ·

Humans constantly restructure knowledge to use it more efficiently. Our goal is to give a machine learning system similar abilities so that it can learn more efficiently. We introduce the \textit{knowledge refactoring} problem, where the goal is to restructure a learner's knowledge base to reduce its size and to minimise redundancy in it. We focus on inductive logic programming, where the knowledge base is a logic program. We introduce Knorf, a system which solves the refactoring problem using constraint optimisation. We evaluate our approach on two program induction domains: real-world string transformations and building Lego structures. Our experiments show that learning from refactored knowledge can improve predictive accuracies fourfold and reduce learning times by half.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here