Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural Network Approach

18 Jun 2017  ·  Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, Yuji Matsumoto ·

Knowledge base completion (KBC) aims to predict missing information in a knowledge base.In this paper, we address the out-of-knowledge-base (OOKB) entity problem in KBC:how to answer queries concerning test entities not observed at training time. Existing embedding-based KBC models assume that all test entities are available at training time, making it unclear how to obtain embeddings for new entities without costly retraining. To solve the OOKB entity problem without retraining, we use graph neural networks (Graph-NNs) to compute the embeddings of OOKB entities, exploiting the limited auxiliary knowledge provided at test time.The experimental results show the effectiveness of our proposed model in the OOKB setting.Additionally, in the standard KBC setting in which OOKB entities are not involved, our model achieves state-of-the-art performance on the WordNet dataset. The code and dataset are available at https://github.com/takuo-h/GNN-for-OOKB

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here