Kolmogorov Width Decay and Poor Approximators in Machine Learning: Shallow Neural Networks, Random Feature Models and Neural Tangent Kernels
We establish a scale separation of Kolmogorov width type between subspaces of a given Banach space under the condition that a sequence of linear maps converges much faster on one of the subspaces. The general technique is then applied to show that reproducing kernel Hilbert spaces are poor $L^2$-approximators for the class of two-layer neural networks in high dimension, and that multi-layer networks with small path norm are poor approximators for certain Lipschitz functions, also in the $L^2$-topology.
PDF AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here