Kuramoto model based analysis reveals oxytocin effects on brain network dynamics

18 May 2021  ·  Shuhan Zheng, Zhichao Liang, Youzhi Qu, Qingyuan Wu, Haiyan Wu, Quanying Liu ·

The oxytocin effects on large-scale brain networks such as Default Mode Network (DMN) and Frontoparietal Network (FPN) have been largely studied using fMRI data. However, these studies are mainly based on the statistical correlation or Bayesian causality inference, lacking interpretability at physical and neuroscience level. Here, we propose a physics-based framework of Kuramoto model to investigate oxytocin effects on the phase dynamic neural coupling in DMN and FPN. Testing on fMRI data of 59 participants administrated with either oxytocin or placebo, we demonstrate that oxytocin changes the topology of brain communities in DMN and FPN, leading to higher synchronization in the FPN and lower synchronization in the DMN, as well as a higher variance of the coupling strength within the DMN and more flexible coupling patterns across time. These results together indicate that oxytocin may increase the ability to overcome the corresponding internal oscillation dispersion and support the flexibility in neural synchrony in various social contexts, providing new evidence for explaining the oxytocin modulated social behaviors. Our proposed Kuramoto model-based framework can be a potential tool in network neuroscience and offers physical and neural insights into phase dynamics of the brain.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.