Kyoto University Participation to WAT 2017

We describe here our approaches and results on the WAT 2017 shared translation tasks. Following our good results with Neural Machine Translation in the previous shared task, we continue this approach this year, with incremental improvements in models and training methods. We focused on the ASPEC dataset and could improve the state-of-the-art results for Chinese-to-Japanese and Japanese-to-Chinese translations.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here