Frank-Wolfe Network: An Interpretable Deep Structure for Non-Sparse Coding

28 Feb 2018  ·  Dong Liu, Ke Sun, Zhangyang Wang, Runsheng Liu, Zheng-Jun Zha ·

The problem of $L_p$-norm constrained coding is to convert signal into code that lies inside an $L_p$-ball and most faithfully reconstructs the signal. Previous works under the name of sparse coding considered the cases of $L_0$ and $L_1$ norms. The cases with $p>1$ values, i.e. non-sparse coding studied in this paper, remain a difficulty. We propose an interpretable deep structure namely Frank-Wolfe Network (F-W Net), whose architecture is inspired by unrolling and truncating the Frank-Wolfe algorithm for solving an $L_p$-norm constrained problem with $p\geq 1$. We show that the Frank-Wolfe solver for the $L_p$-norm constraint leads to a novel closed-form nonlinear unit, which is parameterized by $p$ and termed $pool_p$. The $pool_p$ unit links the conventional pooling, activation, and normalization operations, making F-W Net distinct from existing deep networks either heuristically designed or converted from projected gradient descent algorithms. We further show that the hyper-parameter $p$ can be made learnable instead of pre-chosen in F-W Net, which gracefully solves the non-sparse coding problem even with unknown $p$. We evaluate the performance of F-W Net on an extensive range of simulations as well as the task of handwritten digit recognition, where F-W Net exhibits strong learning capability. We then propose a convolutional version of F-W Net, and apply the convolutional F-W Net into image denoising and super-resolution tasks, where F-W Net all demonstrates impressive effectiveness, flexibility, and robustness.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here