Label Distribution Learning via Implicit Distribution Representation

28 Sep 2022  ·  Zhuoran Zheng, Xiuyi Jia ·

In contrast to multi-label learning, label distribution learning characterizes the polysemy of examples by a label distribution to represent richer semantics. In the learning process of label distribution, the training data is collected mainly by manual annotation or label enhancement algorithms to generate label distribution. Unfortunately, the complexity of the manual annotation task or the inaccuracy of the label enhancement algorithm leads to noise and uncertainty in the label distribution training set. To alleviate this problem, we introduce the implicit distribution in the label distribution learning framework to characterize the uncertainty of each label value. Specifically, we use deep implicit representation learning to construct a label distribution matrix with Gaussian prior constraints, where each row component corresponds to the distribution estimate of each label value, and this row component is constrained by a prior Gaussian distribution to moderate the noise and uncertainty interference of the label distribution dataset. Finally, each row component of the label distribution matrix is transformed into a standard label distribution form by using the self-attention algorithm. In addition, some approaches with regularization characteristics are conducted in the training phase to improve the performance of the model.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here