Labels, Information, and Computation: Efficient Learning Using Sufficient Labels

19 Apr 2021  ·  Shiyu Duan, Spencer Chang, Jose C. Principe ·

In supervised learning, obtaining a large set of fully-labeled training data is expensive. We show that we do not always need full label information on every single training example to train a competent classifier. Specifically, inspired by the principle of sufficiency in statistics, we present a statistic (a summary) of the fully-labeled training set that captures almost all the relevant information for classification but at the same time is easier to obtain directly. We call this statistic "sufficiently-labeled data" and prove its sufficiency and efficiency for finding the optimal hidden representations, on which competent classifier heads can be trained using as few as a single randomly-chosen fully-labeled example per class. Sufficiently-labeled data can be obtained from annotators directly without collecting the fully-labeled data first. And we prove that it is easier to directly obtain sufficiently-labeled data than obtaining fully-labeled data. Furthermore, sufficiently-labeled data is naturally more secure since it stores relative, instead of absolute, information. Extensive experimental results are provided to support our theory.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here