Lambda-Policy Iteration with Randomization for Contractive Models with Infinite Policies: Well-Posedness and Convergence

Abstract dynamic programming models are used to analyze $\lambda$-policy iteration with randomization algorithms. Particularly, contractive models with infinite policies are considered and it is shown that well-posedness of the $\lambda$-operator plays a central role in the algorithm. The operator is known to be well-posed for problems with finite states, but our analysis shows that it is also well-defined for the contractive models with infinite states studied. Similarly, the algorithm we analyze is known to converge for problems with finite policies, but we identify the conditions required to guarantee convergence with probability one when the policy space is infinite regardless of the number of states. Guided by the analysis, we exemplify a data-driven approximated implementation of the algorithm for estimation of optimal costs of constrained linear and nonlinear control problems. Numerical results indicate potentials of this method in practice.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here