Language Models as Knowledge Bases: On Entity Representations, Storage Capacity, and Paraphrased Queries

EACL 2021  ·  Benjamin Heinzerling, Kentaro Inui ·

Pretrained language models have been suggested as a possible alternative or complement to structured knowledge bases. However, this emerging LM-as-KB paradigm has so far only been considered in a very limited setting, which only allows handling 21k entities whose single-token name is found in common LM vocabularies. Furthermore, the main benefit of this paradigm, namely querying the KB using a variety of natural language paraphrases, is underexplored so far. Here, we formulate two basic requirements for treating LMs as KBs: (i) the ability to store a large number facts involving a large number of entities and (ii) the ability to query stored facts. We explore three entity representations that allow LMs to represent millions of entities and present a detailed case study on paraphrased querying of world knowledge in LMs, thereby providing a proof-of-concept that language models can indeed serve as knowledge bases.

PDF Abstract EACL 2021 PDF EACL 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here