Language Models can Infer Action Semantics for Symbolic Planners from Environment Feedback

4 Jun 2024  ·  Wang Zhu, Ishika Singh, Robin Jia, Jesse Thomason ·

Symbolic planners can discover a sequence of actions from initial to goal states given expert-defined, domain-specific logical action semantics. Large Language Models (LLMs) can directly generate such sequences, but limitations in reasoning and state-tracking often result in plans that are insufficient or unexecutable. We propose Predicting Semantics of Actions with Language Models (PSALM), which automatically learns action semantics by leveraging the strengths of both symbolic planners and LLMs. PSALM repeatedly proposes and executes plans, using the LLM to partially generate plans and to infer domain-specific action semantics based on execution outcomes. PSALM maintains a belief over possible action semantics that is iteratively updated until a goal state is reached. Experiments on 7 environments show that when learning just from one goal, PSALM boosts plan success rate from 36.4% (on Claude-3.5) to 100%, and explores the environment more efficiently than prior work to infer ground truth domain action semantics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods