Language Use Matters: Analysis of the Linguistic Structure of Question Texts Can Characterize Answerability in Quora

11 Mar 2017  ·  Suman Kalyan Maity, Aman Kharb, Animesh Mukherjee ·

Quora is one of the most popular community Q&A sites of recent times. However, many question posts on this Q&A site often do not get answered. In this paper, we quantify various linguistic activities that discriminates an answered question from an unanswered one. Our central finding is that the way users use language while writing the question text can be a very effective means to characterize answerability. This characterization helps us to predict early if a question remaining unanswered for a specific time period t will eventually be answered or not and achieve an accuracy of 76.26% (t = 1 month) and 68.33% (t = 3 months). Notably, features representing the language use patterns of the users are most discriminative and alone account for an accuracy of 74.18%. We also compare our method with some of the similar works (Dror et al., Yang et al.) achieving a maximum improvement of ~39% in terms of accuracy.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here