Large Data and Zero Noise Limits of Graph-Based Semi-Supervised Learning Algorithms

23 May 2018  ·  Matthew M. Dunlop, Dejan Slepčev, Andrew M. Stuart, Matthew Thorpe ·

Scalings in which the graph Laplacian approaches a differential operator in the large graph limit are used to develop understanding of a number of algorithms for semi-supervised learning; in particular the extension, to this graph setting, of the probit algorithm, level set and kriging methods, are studied. Both optimization and Bayesian approaches are considered, based around a regularizing quadratic form found from an affine transformation of the Laplacian, raised to a, possibly fractional, exponent... Conditions on the parameters defining this quadratic form are identified under which well-defined limiting continuum analogues of the optimization and Bayesian semi-supervised learning problems may be found, thereby shedding light on the design of algorithms in the large graph setting. The large graph limits of the optimization formulations are tackled through $\Gamma-$convergence, using the recently introduced $TL^p$ metric. The small labelling noise limits of the Bayesian formulations are also identified, and contrasted with pre-existing harmonic function approaches to the problem. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here