Lasso Guarantees for Time Series Estimation Under Subgaussian Tails and $ β$-Mixing

12 Feb 2016  ·  Kam Chung Wong, Zifan Li, Ambuj Tewari ·

Many theoretical results on estimation of high dimensional time series require specifying an underlying data generating model (DGM). Instead, along the footsteps of~\cite{wong2017lasso}, this paper relies only on (strict) stationarity and $ \beta $-mixing condition to establish consistency of lasso when data comes from a $\beta$-mixing process with marginals having subgaussian tails... Because of the general assumptions, the data can come from DGMs different than standard time series models such as VAR or ARCH. When the true DGM is not VAR, the lasso estimates correspond to those of the best linear predictors using the past observations. We establish non-asymptotic inequalities for estimation and prediction errors of the lasso estimates. Together with~\cite{wong2017lasso}, we provide lasso guarantees that cover full spectrum of the parameters in specifications of $ \beta $-mixing subgaussian time series. Applications of these results potentially extend to non-Gaussian, non-Markovian and non-linear times series models as the examples we provide demonstrate. In order to prove our results, we derive a novel Hanson-Wright type concentration inequality for $\beta$-mixing subgaussian random vectors that may be of independent interest. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here