Last-Iterate Convergence of General Parameterized Policies in Constrained MDPs

21 Aug 2024  ·  Washim Uddin Mondal, Vaneet Aggarwal ·

We consider the problem of learning a Constrained Markov Decision Process (CMDP) via general parameterization. Our proposed Primal-Dual based Regularized Accelerated Natural Policy Gradient (PDR-ANPG) algorithm uses entropy and quadratic regularizers to reach this goal. For a parameterized policy class with transferred compatibility approximation error, $\epsilon_{\mathrm{bias}}$, PDR-ANPG achieves a last-iterate $\epsilon$ optimality gap and $\epsilon$ constraint violation (up to some additive factor of $\epsilon_{\mathrm{bias}}$) with a sample complexity of $\tilde{\mathcal{O}}(\epsilon^{-2}\min\{\epsilon^{-2},\epsilon_{\mathrm{bias}}^{-\frac{1}{3}}\})$. If the class is incomplete ($\epsilon_{\mathrm{bias}}>0$), then the sample complexity reduces to $\tilde{\mathcal{O}}(\epsilon^{-2})$ for $\epsilon<(\epsilon_{\mathrm{bias}})^{\frac{1}{6}}$. Moreover, for complete policies with $\epsilon_{\mathrm{bias}}=0$, our algorithm achieves a last-iterate $\epsilon$ optimality gap and $\epsilon$ constraint violation with $\tilde{\mathcal{O}}(\epsilon^{-4})$ sample complexity. It is a significant improvement of the state-of-the-art last-iterate guarantees of general parameterized CMDPs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here