Latent Domain Transfer: Crossing modalities with Bridging Autoencoders

ICLR 2019 Yingtao TianJesse Engel

Domain transfer is a exciting and challenging branch of machine learning because models must learn to smoothly transfer between domains, preserving local variations and capturing many aspects of variation without labels. However, most successful applications to date require the two domains to be closely related (ex... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.