Latent Representations of Dynamical Systems: When Two is Better Than One

9 Feb 2019  ·  Max Tegmark ·

A popular approach for predicting the future of dynamical systems involves mapping them into a lower-dimensional "latent space" where prediction is easier. We show that the information-theoretically optimal approach uses different mappings for present and future, in contrast to state-of-the-art machine-learning approaches where both mappings are the same. We illustrate this dichotomy by predicting the time-evolution of coupled harmonic oscillators with dissipation and thermal noise, showing how the optimal 2-mapping method significantly outperforms principal component analysis and all other approaches that use a single latent representation, and discuss the intuitive reason why two representations are better than one. We conjecture that a single latent representation is optimal only for time-reversible processes, not for e.g. text, speech, music or out-of-equilibrium physical systems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here