Latent Transformations for Object View Points Synthesis

12 Jul 2018 Sangpil Kim Nick Winovich Guang Lin Karthik Ramani

We propose a fully-convolutional conditional generative model, the latent transformation neural network (LTNN), capable of view synthesis using a light-weight neural network suited for real-time applications. In contrast to existing conditional generative models which incorporate conditioning information via concatenation, we introduce a dedicated network component, the conditional transformation unit (CTU), designed to learn the latent space transformations corresponding to specified target views... (read more)

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet