Law to Binary Tree -- An Formal Interpretation of Legal Natural Language

16 Dec 2022  ·  Ha-Thanh Nguyen, Vu Tran, Ngoc-Cam Le, Thi-Thuy Le, Quang-Huy Nguyen, Le-Minh Nguyen, Ken Satoh ·

Knowledge representation and reasoning in law are essential to facilitate the automation of legal analysis and decision-making tasks. In this paper, we propose a new approach based on legal science, specifically legal taxonomy, for representing and reasoning with legal documents. Our approach interprets the regulations in legal documents as binary trees, which facilitates legal reasoning systems to make decisions and resolve logical contradictions. The advantages of this approach are twofold. First, legal reasoning can be performed on the basis of the binary tree representation of the regulations. Second, the binary tree representation of the regulations is more understandable than the existing sentence-based representations. We provide an example of how our approach can be used to interpret the regulations in a legal document.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here