Layered image motion with explicit occlusions, temporal consistency, and depth ordering

NeurIPS 2010  ·  Deqing Sun, Erik B. Sudderth, Michael J. Black ·

Layered models are a powerful way of describing natural scenes containing smooth surfaces that may overlap and occlude each other. For image motion estimation, such models have a long history but have not achieved the wide use or accuracy of non-layered methods... We present a new probabilistic model of optical flow in layers that addresses many of the shortcomings of previous approaches. In particular, we define a probabilistic graphical model that explicitly captures: 1) occlusions and disocclusions; 2) depth ordering of the layers; 3) temporal consistency of the layer segmentation. Additionally the optical flow in each layer is modeled by a combination of a parametric model and a smooth deviation based on an MRF with a robust spatial prior; the resulting model allows roughness in layers. Finally, a key contribution is the formulation of the layers using an image-dependent hidden field prior based on recent models for static scene segmentation. The method achieves state-of-the-art results on the Middlebury benchmark and produces meaningful scene segmentations as well as detected occlusion regions. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here