Lazy-CFR: fast and near optimal regret minimization for extensive games with imperfect information

10 Oct 2018  ·  Yichi Zhou, Tongzheng Ren, Jialian Li, Dong Yan, Jun Zhu ·

Counterfactual regret minimization (CFR) is the most popular algorithm on solving two-player zero-sum extensive games with imperfect information and achieves state-of-the-art performance in practice. However, the performance of CFR is not fully understood, since empirical results on the regret are much better than the upper bound proved in \cite{zinkevich2008regret}. Another issue is that CFR has to traverse the whole game tree in each round, which is time-consuming in large scale games. In this paper, we present a novel technique, lazy update, which can avoid traversing the whole game tree in CFR, as well as a novel analysis on the regret of CFR with lazy update. Our analysis can also be applied to the vanilla CFR, resulting in a much tighter regret bound than that in \cite{zinkevich2008regret}. Inspired by lazy update, we further present a novel CFR variant, named Lazy-CFR. Compared to traversing $O(|\mathcal{I}|)$ information sets in vanilla CFR, Lazy-CFR needs only to traverse $O(\sqrt{|\mathcal{I}|})$ information sets per round while keeping the regret bound almost the same, where $\mathcal{I}$ is the class of all information sets. As a result, Lazy-CFR shows better convergence result compared with vanilla CFR. Experimental results consistently show that Lazy-CFR outperforms the vanilla CFR significantly.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here