Leading Tree in DPCLUS and Its Impact on Building Hierarchies

12 Jun 2015Ji XuGuoyin Wang

This paper reveals the tree structure as an intermediate result of clustering by fast search and find of density peaks (DPCLUS), and explores the power of using this tree to perform hierarchical clustering. The array used to hold the index of the nearest higher-densitied object for each object can be transformed into a Leading Tree (LT), in which each parent node P leads its child nodes to join the same cluster as P itself, and the child nodes are sorted by their gamma values in descendant order to accelerate the disconnecting of root in each subtree... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet