Towards Robust Neural Networks via Orthogonal Diversity

23 Oct 2020  ·  Kun Fang, Qinghua Tao, Yingwen Wu, Tao Li, Jia Cai, Feipeng Cai, Xiaolin Huang, Jie Yang ·

Deep Neural Networks (DNNs) are vulnerable to invisible perturbations on the images generated by adversarial attacks, which raises researches on the adversarial robustness of DNNs. A series of methods represented by the adversarial training and its variants have proven as one of the most effective techniques in enhancing the DNN robustness. Generally, adversarial training focuses on enriching the training data by involving perturbed data. Despite of the efficiency in defending specific attacks, adversarial training is benefited from the data augmentation, which does not contribute to the robustness of DNN itself and usually suffers from accuracy drop on clean data as well as inefficiency in unknown attacks. Towards the robustness of DNN itself, we propose a novel defense that aims at augmenting the model in order to learn features adaptive to diverse inputs, including adversarial examples. Specifically, we introduce multiple paths to augment the network, and impose orthogonality constraints on these paths. In addition, a margin-maximization loss is designed to further boost DIversity via Orthogonality (DIO). Extensive empirical results on various data sets, architectures, and attacks demonstrate the adversarial robustness of the proposed DIO.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here